R What are
the major
attributes of
quality for
WebApps?

CHAPTER 19 DESIGN FOR WEBAPPS 561

In reality, all of the general characteristics of software quality discussed in Chapters
9, 15, and 26 apply to WebApps. However, the most relevant of these characteristics—
usability, functionality, reliability, efficiency, and maintainability—provide a useful ba-
sis for assessing the quality of Web-based systems.

wbmﬁ!hmuhmdenciesofhumnWmmm&@hﬁ

Olsina and his colleagues [OLS99] have prepared a “quality requirement tree” that
identifies a set of technical attributes—usability, functionality, reliability, efficiency,
and maintainability—that lead to high-quality WebApps.! Figure 19.1 summarizes
their work. The criteria noted in the figure are of particular interest to Web engineers
who must design, build, and maintain WebApps over the long term.

Offutt [OFF02] extends the five major quality attributes noted in Figure 19.1 by
adding the following attributes:

Security. WebApps have become heavily integrated with critical corporate and
government databases. E-commerce applications extract and then store sensitive
customer information. For these and many other reasons, WebApp security is para-
mount in many situations. The key measure of security is the ability of the WebApp
and its server environment to rebuff unauthorized access and/or thwart an outright

Quality

requirements
tree [OLS99]

Global site understandability
Onine feedback and help features
Usability Interface and aesthetic features

Special features

Searching and retrieving capability
Functionality é Navigation and browsing features

Application domain-related features

Web Correct link processing
application Reliability é Error recovery
quality User input validation and recovery

Response time performance
Efficiency é Page generation speed
Graphics generation speed

Ease of correction
Maintainability é éz:::?bb;l;;y
ili

1 These quality attributes are quite similar to those presented in Chapters 9, 15, and 26. The implica-
tion: quality characteristics are universal for all software.

562 PART THREE APPLYING WEB ENGINEERING

malevolent attack. A detailed discussion of WebApp security is beyond the scope of
this book. The interested reader should see [MCCO1], [NORO2], or [KALO3].

Availability. Even the best WebApp will not meet users’ needs if it is unavailable.
In a technical sense, availability is the measure of the percentage of time that a
WebApp is available for use. The typical end-user expects WebApps to be available
24/7/365. Anything less is deemed unacceptable.? But “up-time” is not the only in-
dicator of availability. Offutt [OFF02] suggests that “using features available on only
one browser or one platform” makes the WebApp unavailable to those with a differ-
ent browser/platform configuration. The user will invariably go elsewhere.

Scalability. Can the WebApp and its server environment be scaled to handle 100,
1000, 10,000, or 100,000 users? Will the WebApp and the systems with which it is in-
terfaced handle significant variation in volume or will responsiveness drop dramat-
ically (or cease altogether)? It is not enough to build a WebApp that is successful. It
is equally important to build a WebApp that can accommodate the burden of success
(significantly more end-users) and become even more successful.

Time-to-market. Although time to market is not a true quality attribute in the
technical sense, it is a measure of quality from a business point of view. The first
WebApp in the market often captures a disproportionate number of end-users.

WebApp Design Quality Checklist

The following checklist, adapted from o Are tables organized and sized in a manner that

information presented at Webreference.com, makes them understandable and displayed efficiently?
provides a set of questions that will help both Web o s HTML optimized to eliminate inefficiencies?
engineers and end-users assess overall WebApp quality: o s the overall page design easy to read and navigate?

o Do all pointers {links) provide links to information that
is of interest to users?

o s it likely that most links have persistence on the Web?

o s the WebApp instrumented with site management
utilities that include tools for usage tracking, link testing,

o Can content and/or function and/or navigation
options be tailored to the user’s preferences?

o Can content and/or functiondlity be customized to the
bandwidth over which the user communicates.

o Have graphics and other nontext media been used
appropriately? Are graphics file sizes optimized for

\display efficiency? /

Billions of Web pages are available for those in search of information on the World
Wide Web. Even well-targeted Web searches result in an avalanche of content. With
so many sources of information to choose from, how does the user assess the qual-
ity (e.g., veracity, accuracy, completeness, timeliness) of the content that is presented
within a WebApp? Tillman [TILOO] suggests a useful set of criteria for assessing the
quality of content:

local searching, and security?

2 This expectation is, of course, unrealistic. Major WebApps must schedule “downtime” for fixes and
upgrades.

What should

we consider
when assessing
content quality?

CHAPTER 19 DESIGN FOR WEBAPPS 563

e Can the scope and depth of content be easily determined to ensure that it
meets the user’s needs?

e Can the background and authority of the content’s authors be easily identified?

e Is it possible to determine the currency of the content, the last update, and
what was updated?

e Is the content and its location stable (i.e., will it remain at the referenced URL)?
In addition these content-related questions, the following might be added:

e [s content credible?

¢ Is content unique? That is, does the WebApp provide some unique benefit to
those who use it?

e Is content valuable to the targeted user community?

o Is content well-organized? Indexed? Easily accessible?
The checklists noted in this section represent only a small sampling of the issues that
should be addressed as the design of a WebApp evolves. An important goal of Web

engineering is to develop systems in which affirmative answers are provided to all
quality-related questions.

ean, doesn't mean you should.”

19.1.2 Design Goals

In her regular column on Web design, Jean Kaiser [KAIO2] suggests the following de-
sign goals that are applicable to virtually every WebApp regardless of application do-
main, size, or complexity:

Simplicity. Although it may seem old-fashioned, the aphorism “all things in moder-
ation” applies to WebApps. There is a tendency among some designers to provide the
end-user with “too much”—exhaustive content, extreme visuals, intrusive animation,
enormous Web pages, the list is long. Better to strive for moderation and simplicity.

Consistency. This design goal applies to virtually every element of the design
model. Content should be constructed consistently (e.g., text formatting and font
styles should be the same across all text documents: graphic art should have a con-
sistent look, color scheme, and style). Graphic design (aesthetics) should present a
consistent look across all parts of the WebApp. Architectural design should establish
templates that lead to a consistent hypermedia structure. Interface design should de-
fine consistent modes of interaction, navigation, and content display. Navigation
mechanisms should be used consistently across all WebApp elements.

Identity. The aesthetic, interface, and navigational design of a WebApp must be con-
sistent with the application domain for which it is to be built. A Web site for a hip-hop

ﬁnwa’

If it is likely that users
may enfer your
WebApp at various
locations ond levels in
the content hierarchy,
be sure to design every
page with navigation
features thot will lead
the user o other points
of inferest.

@
POINT
A good WebApp
interface is
understandable and
forgiving, providing the
user with o sense of
control.

PART THREE APPLYING WEB ENGINEERING

and rewarding experience. Interface design concepts, principles, and methods pro-
vide the Web engineer with the tools required to achieve this list of attributes.

In Chapter 12, we noted that interface design begins not with a consideration of
technology, but with a careful examination of the end-user. During analysis modeling
for Web engineering (Chapter 18), a user hierarchy is developed. Each user category
may have subtly different needs, may want to interact with the WebApp in different
ways, and may require unique functionality and content. This information is derived
during requirements analysis, but it is revisited as the first step in interface design.

buﬂlhd(s an elegant and appropriate design style, it will fail.”

Dix [DIX99] argues that a Web engineer must design an interface so that it an-
swers three primary questions for the end-user:

Where am I? The interface should (1) provide an indication of the WebApp that
has been accessed? and (2) inform the user of her location in the content hierarchy.

What can I do now? The interface should always help the user understand his
current options—what functions are available, what links are live, what content is
relevant.

Where have I been; where am I going? The interface must facilitate navigation.
Hence, it must provide a “map” (implemented in a way that is easy to understand)
of where the user has been and what paths may be taken to move elsewhere
within the WebApp.

An effective WebApp interface must provide answers for each of these questions as
the end-user navigates through content and functionality.

19.3.1 Interface Design Principles and Guidelines

Bruce Tognozzi [TOGO1] defines a set of fundamental characteristics that all inter-
faces should exhibit and, in doing so, establishes a philosophy that should be fol-
lowed by every WebApp interface designer:

Effective interfaces are visually apparent and forgiving, instilling in their users a sense of
control. Users quickly see the breadth of their options, grasp how to achieve their goals,
and do their work.

Effective interfaces do not concern the user with the inner workings of the system.
Work is carefully and continuously saved, with full option for the user to undo any activ-
ity at any time.

Effective applications and services perform a maximum of work, while requiring a
minimum of information from users.

4 Each of us has bookmarked a Web-site page, only to revisit later and have no indication of the Web

site or the context for the page (as well as no way to move to another location within the site).

%
POINT

A WebApp interface

should be designed to

conform to the set of

principles noted here.

CHAPTER 19 DESIGN FOR WEBAPPS 567

In order to design interfaces that exhibit these characteristics, Tognozzi [TOGO1]
identifies a set of overriding design principles:®

Anticipation—A WebApp should be designed so that it anticipates the user’s next
move. For example, consider a customer support WebApp developed by a manu-
facturer of computer printers. A user has requested a content object that presents
information about a printer driver for a newly released operating system. The de-
signer of the WebApp should anticipate that the user might request a download of
the driver and should provide navigation facilities that allow this to happen without
requiring the user to search for this capability.

Communication—The interface should communicate the Status of any activity initi-
ated by the user. Communication can be obvious (€.8., a text message) or subtle
(€.8., a sheet of paper moving through a printer to indicate that printing is under-
way). The interface should also communicate user status (e.g., the user’s identifi-
cation) and location within the WebApp content hierarchy.

Consistency—The use of navigation controls, menus, icons, and aesthetics (e.g.,
color, shape, layout) should be consistent throughout the WebApp. For example, if
underlined blue text implies a navigation link, content should never incorporate
blue underlined text that does not imply a link. Every feature of the interface
should respond in a manner that is consistent with user expectations.¢

Controlled autonomy—The interface should facilitate user movement throughout
the WebApp, but it should do so in a manner that enforces navigation conventions that
have been established for the application. For example, navigation to secure portions
of the WebApp should be controlled by userID and password, and there should be
no navigation mechanism that enables a user to circumvent these controls,

Efficiency—The design of the WebApp and its interface should optimize the user’s
work efficiency, not the efficiency of the Web engineer who designs and builds it or the
client-server environment that executes jf. Tognozzi [TOGO1] discusses this when he
writes: “This simple truth is why it is so important for everyone involved in a soft-
ware project to appreciate the importance of making user productivity goal one
and to understand the vital difference between building an efficient system and
empowering an efficient user.”

Flexibility—The interface should be flexible enough to enable some users to accom-
plish tasks directly and others to explore the WebApp in a somewhat random Jashion.
In every case, it should enable the user to understand where he is and provide the
user with functionality that can undo mistakes and retrace poorly chosen naviga-
tion paths.

5 Tognozzi's original principles have been adapted and extended for use in this book. See [TOGO1]
for further discussion of these principles.

6 Tognozzi [TOGO1] notes that the only way to be sure that user €xpectations are properly under-
stood is through comprehensive user testing (Chapter 20).

568

A seorch on the Web
wil uncover many
ovailoble libeories, ¢..,
Jova AP! pockages,
interfaces, and dasses

(OM, DCOM, ond Typ
Librovies at

PART THREE APPLYING WEB ENGINEERING

Focus—The WebApp interface (and the content it presents) should stay focused on
the user task(s) at hand. In all hypermedia there is a tendency to route the user to
loosely related content. Why? Because it's very easy to do! The problem is that the
user can rapidly become lost in many layers of supporting information and lose site
of the original content that she wanted in the first place.

Fitt's Law—"The time to acquire a target is a function of the distance to and size of
the target” [TOGO1]. Based on a study conducted in the 1950s [FIT54], Fitt's Law “is
an effective method of modeling rapid, aimed movements, where one appendage
(like a hand) starts at rest at a specific start position, and moves to rest within a
target area” [ZHAO2]. If a sequence of selections or standardized inputs (with many
different options within the sequence) is defined by a user task, the first selection
(e.g., mouse pick) should be physically close to the next selection. For example,
consider a WebApp home page interface at an e-commerce site that sells con-
sumer electronics.

Each user option implies a set of follow-on user choices or actions. For exam-
ple, a “buy a product” option requires that the user enter a product category fol-
lowed by the product name. The product category (e.g., audio equipment,
televisions, DVD players) appears as a pull-down menu as soon as “buy a product”
is picked. Therefore, the next choice is immediately obvious (it is nearby), and the
time to acquire it is negligible. If, on the other hand, the choice appeared on a
menu that was located on the other side of the screen, the time for the user to ac-
quire it (and then make the choice) would be far too long.

Human interface objects—A vast libraty of reusable human interface objects has
been developed for WebApps. Use them. Any interface bbject that can be “seen,
heard, touched or otherwise perceived” [TOGO1] by an end-user can be acquired
from any one of a number of object libraries.

Latency reduction—Rather than making the user wait for some internal operation to
complete (e.g., downloading a complex graphical image), the WebApp should use mul-
titasking in a way that lets the user proceed with work as if the operation has been
completed. In addition to reducing latency, delays must be acknowledged so that
the user understands what is happening. This includes (1) providing audio feed-
back (e.g., a click or bell tone) when a selection does not result in an immediate
action by the WebApp; (2) displaying an animated clock or progress bar to indicate
that processing is under way; (3) provide some entertainment (€.g., an animation
or text presentation) while lengthy processing occurs.

mkhmwﬁhﬂnfwesmeps.Shonenthedismncebeiweonﬁnwuudﬁﬁgd.' LN

Learnability—A WebApp interface should be designed to minimize learning time,
and once learned, to minimize relearning required when the WebApp s revisited. In

CHAPTER 19 DESIGN FOR WEBAPPS 569

general the interface should emphasize a simple, intuitive design that organizes
content and functionality into categories that are obvious to the user.

Metaphors—An interface that uses an interaction metaphor is easier to learn and
easier to use, as long as the metaphor is appropriate for the application and the user. A
metaphor should call on images and concepts from the user’s experience, but it
does not need to be an exact reproduction of a real world experience. For example,
an e-commerce site that implements automated bill paying for a financial institu-
tion uses a checkbook metaphor (not surprisingly) to assist the user in specifying
and scheduling bill payments. However, when a user “writes” a check, he need not
enter the complete payee name but can pick from a list of payees or have the sys-
tem select based on the first few typed letters. The metaphor remains intact, but
the user gets an assist from the WebApp.

e Maintain work product integrity. A work product (e. g., a form completed by the
m" user, a user specified list) must be automatically saved so that it will not be lost ifan er-
Metaphors are an ror occurs. Each of us has experienced the frustration associated with completing a
excelnt idea because lengthy WebApp form only to have the content lost because of an error (made by
they mirror real world . . . e

us, by the WebApp, or in transmission from client to server). To avoid this, a

experience. Just be
sure that the memphor ~ WeDAPD should be designed to auto-save all user specified data.

I}("’” choose is well Readability—All information presented through the interface should be readable by
nown among end young and old. The interface designer should emphasize readable type styles, font
sizes, and color background choices that enhance contrast.

users.

Track state-—When appropriate, the state of the user interaction should be tracked and
stored so that a user can log-off and return later to pick up where she left off. In general,
cookies can be designed to store state information. However, cookies are a contro-
versial technology, and other design solutions may be more palatable for some users.

Visible navigation—A well-designed WebApp interface provides “the illusion that
users are in the same place, with the work brought to them” [TOGO1]. When this ap-
proach is used, navigation is not a user concern. Rather, the user retrieves content
objects and selects functions that are displayed and executed through the interface.

QTE’. Interface Design Review e
S The scone: Doug Millers offce. Vinod: Yeah . . . we all went through it brom o fech
M%(Wofhme pomtofwmand”ﬂvauwofm
ring group) and Vinod Raman, a member foShoron[mnogeroH\a%b
® product software engineering feam. oufsourcmngdorforﬁ'em ;
Lo site] yesterday. P
Doug: You and Sharon con get :

yggundihehmnhodudmnceb smo"stuffglvemamynf)

issues.

.com e-commerce interface

570 PART THREE APPLYING WEB ENGINEERING

noreo|medtod¢scri§n?:*;

Specify the SafeHome sy
Purchase a Safeﬂomo ‘

Mﬁéap‘uyodon the home

If you're a knowledgeable user, you
from a set of categorized pull-down m
cameras, control panels, efc. If \
for a recommendation and thutwﬂi

describe your house. | think d‘s'o bit

lhey’ re all okay, Doug: | agree. Have you h&ed

Vinod: No, | want to discuss lh;
and then 'l give heracall.

. you can
atis oF oomponents

Nielsen and Wagner [NIE96] suggest a few pragmatic interface design guidelines
(based on their redesign of a major WebApp) that provide a nice complement to the
principles suggested earlier in this section:

e Reading speed on a computer monitor is approximately 25 percent slower
than reading speed for hardcopy. Therefore, do not force the user to read
voluminous amounts of text, particularly when the text explains the
operation of the WebApp or assists in navigation.

e Avoid “under construction” signs—they raise expectations and cause an
unnecessary link that is sure to disappoint.

o Users prefer not to scroll. Important information should be placed within the
dimensions of a typical browser window.

e Navigation menus and head bars should be designed consistently and should
be available on all pages that are available to the user. The design should not
rely on browser functions to assist in navigation.

o Aesthetics should never supersede functionality. For example, a simple

button might be a better navigation option than an aesthetically pleasing, but
vague image or icon whose intent is unclear.

